虫虫首页|资源下载|资源专辑|精品软件
登录|注册

高速<b>串行</b>

  • dsp的串行外设接口SPI SPI是一个高速同步串行输入/输出端口,传送速率可编 程

    dsp的串行外设接口SPI SPI是一个高速同步串行输入/输出端口,传送速率可编 程,应用:外部移位寄存器、D/A转换器、A/D转换器、 串行EEPROM、LED显示驱动器等外部设备进行扩展。

    标签: SPI dsp 串行 外设接口

    上传时间: 2014-11-23

    上传用户:fandeshun

  • 此程序是关于TMS320F2812数字信号处理器的高速同步串行通信SPI的程序。

    此程序是关于TMS320F2812数字信号处理器的高速同步串行通信SPI的程序。

    标签: F2812 2812 320F TMS

    上传时间: 2017-01-02

    上传用户:aix008

  • 基于RocketIO的高速串行协议设计与实现

    采用Xilinx 公司Virtex- II Pro 系列FPGA 内嵌得SERDES 模块———RocketIO 作为高速串行协议的物理层, 利用其8B/10B的编解码和串化、解串功能, 实现了两板间基于数据帧的简单高速串行传输, 并在ISE 环境中对整个协议进行了仿真, 当系统频率为100MHz, 串行速率在2Gbps 时, 在验证板上用chipscope 抓取的数据表明能够实现两板间数据的高速无误串行传输。关键词: RocketIO;高速串行传输;SERDES;协议

    标签: RocketIO 高速串行 协议设计

    上传时间: 2013-10-21

    上传用户:xy@1314

  • TMS320LF2407 DSP控制器的串行通信设计

    TI公司的TMS320LF2407型DSP微控制器内嵌的异步串行口(SCI)支持CPU与其它使用标准格式的异步外设之间的数字通讯,通过RS-232接口可以方便地进行DSP之间或与PC机之间的异步通信。而串行外设接口(SPI)是一个高速同步串行输入/输出(I/O)端口,常用于DSP控制器和外部器件或其它控制器间的通讯。本设计正是通过TMS320LF2407所带有的SCI模块进行两台DSP的数据传输通信。同时还利用了DSP2407的SPI模块和I/O口作了显示以及键盘扩展电路,以便能实时监控数据的收发。此实例电路结构简单易懂,非常适合刚接触DSP的初学者使用,具有很好的参考价值。

    标签: 2407 TMS 320 DSP

    上传时间: 2013-07-01

    上传用户:huyanju

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-10-13

    上传用户:lml1234lml

  • 基于FPGA的高速串行接口模块仿真设计.rar

    现代社会信息量爆炸式增长,由于网络、多媒体等新技术的发展,用户对带宽和速度的需求快速增加。并行传输技术由于时钟抖动和偏移,以及PCB布线的困难,使得传输速率的进一步提升面临设计的极限;而高速串行通信技术凭借其带宽大、抗干扰性强和接口简单等优势,正迅速取代传统的并行技术,成为业界的主流。 本论文针对目前比较流行并且有很大发展潜力的两种高速串行接口电路——高速链路口和Rocket I/O进行研究,并以Xilinx公司最新款的Virtex-5 FPGA为研究平台进行仿真设计。本论文的主要工作是以某低成本相控阵雷达信号处理机为设计平台,在其中的一块信号处理板上,进行了基于LVDS(Low VoltageDifferential Signal)技术的高速LinkPort(链路口)设计和基于CML(Current ModeLogic)技术的Rocket I/O高速串行接口设计。首先在FPGA的软件中进行程序设计和功能、时序的仿真,当仿真验证通过之后,重点是在硬件平台上进行调试。硬件调试验证的方法是将DSP TS201的链路口功能与在FPGA中的模拟高速链路口相连接,进行数据的互相传送,接收和发送的数据相同,证明了高速链路口设计的正确性。并且在硬件调试时对Rocket IO GTP收发器进行回环设计,经过回环之后接收到的数据与发送的数据相同,证明了Rocket I/O高速串行接口设计的正确性。

    标签: FPGA 高速串行 接口模块

    上传时间: 2013-04-24

    上传用户:恋天使569

  • PIC16和PIC18器件的高速串行自举程序

    PIC16_和PIC18_器件的高速串行自举程序

    标签: PIC 16 18 器件

    上传时间: 2013-10-21

    上传用户:cjh1129

  • 串行编程器源程序(Keil C语言)

    串行编程器源程序(Keil C语言)//FID=01:AT89C2051系列编程器//实现编程的读,写,擦等细节//AT89C2051的特殊处:给XTAL一个脉冲,地址计数加1;P1的引脚排列与AT89C51相反,需要用函数转换#include <e51pro.h> #define C2051_P3_7 P1_0#define C2051_P1 P0//注意引脚排列相反#define C2051_P3_0  P1_1#define C2051_P3_1 P1_2#define C2051_XTAL P1_4#define C2051_P3_2 P1_5#define C2051_P3_3 P1_6#define C2051_P3_4 P1_7#define C2051_P3_5 P3_5 void InitPro01()//编程前的准备工作{ SetVpp0V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=0; Delay_ms(20); nAddress=0x0000; SetVpp5V();} void ProOver01()//编程结束后的工作,设置合适的引脚电平{ SetVpp5V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=1;} BYTE GetData()//从P0口获得数据{ B_0=P0_7; B_1=P0_6; B_2=P0_5; B_3=P0_4; B_4=P0_3; B_5=P0_2; B_6=P0_1; B_7=P0_0; return B;} void SetData(BYTE DataByte)//转换并设置P0口的数据{ B=DataByte; P0_0=B_7; P0_1=B_6; P0_2=B_5; P0_3=B_4; P0_4=B_3; P0_5=B_2; P0_6=B_1; P0_7=B_0;} void ReadSign01()//读特征字{ InitPro01(); Delay_ms(1);//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(20); ComBuf[2]=GetData(); C2051_XTAL=1; C2051_XTAL=0; Delay_us(20); ComBuf[3]=GetData(); ComBuf[4]=0xff;//----------------------------------------------------------------------------- ProOver01();} void Erase01()//擦除器件{ InitPro01();//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 C2051_P3_3=1; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(1); SetVpp12V(); Delay_ms(1); C2051_P3_2=0; Delay_ms(10); C2051_P3_2=1; Delay_ms(1);//----------------------------------------------------------------------------- ProOver01();} BOOL Write01(BYTE Data)//写器件{//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 //写一个单元 C2051_P3_3=0; C2051_P3_4=1; C2051_P3_5=1; C2051_P3_7=1; SetData(Data); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); Delay_us(20); C2051_P3_4=0; Delay_ms(2); nTimeOut=0; P0=0xff; nTimeOut=0; while(!GetData()==Data)//效验:循环读,直到读出与写入的数相同 {  nTimeOut++;  if(nTimeOut>1000)//超时了  {   return 0;  } } C2051_XTAL=1; C2051_XTAL=0;//一个脉冲指向下一个单元//----------------------------------------------------------------------------- return 1;} BYTE Read01()//读器件{ BYTE Data;//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 //读一个单元 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=1; C2051_P3_7=1; Data=GetData(); C2051_XTAL=1; C2051_XTAL=0;//一个脉冲指向下一个单元//----------------------------------------------------------------------------- return Data;} void Lock01()//写锁定位{ InitPro01();//先设置成编程状态//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 if(ComBuf[2]>=1)//ComBuf[2]为锁定位 {  C2051_P3_3=1;  C2051_P3_4=1;  C2051_P3_5=1;  C2051_P3_7=1;  Delay_us(20);  SetVpp12V();  Delay_us(20);  C2051_P3_2=0;  Delay_us(20);  C2051_P3_2=1;  Delay_us(20);  SetVpp5V(); } if(ComBuf[2]>=2) {  C2051_P3_3=1;  C2051_P3_4=1;  C2051_P3_5=0;  C2051_P3_7=0;  Delay_us(20);  SetVpp12V();  Delay_us(20);  C2051_P3_2=0;  Delay_us(20);  C2051_P3_2=1;  Delay_us(20);  SetVpp5V(); }//----------------------------------------------------------------------------- ProOver01();} void PreparePro01()//设置pw中的函数指针,让主程序可以调用上面的函数{ pw.fpInitPro=InitPro01; pw.fpReadSign=ReadSign01; pw.fpErase=Erase01; pw.fpWrite=Write01; pw.fpRead=Read01; pw.fpLock=Lock01; pw.fpProOver=ProOver01;}

    标签: Keil 串行 C语言 编程器

    上传时间: 2013-11-11

    上传用户:gut1234567

  • 基于FPGA的高速串行传输接口研究与实现

    摘 要:介绍了FPGA最新一代器件Virtex25上的高速串行收发器RocketIO。基于ML505开发平台构建了一个高速串行数据传输系统,重点说明了该系统采用RocketIO实现1. 25Gbp s高速串行传输的设计方案。实现并验证了采用FPGA完成千兆串行传输的功能目标,为后续采用FPGA实现各种高速协议奠定了良好的基础。关键词: FPGA;高速串行传输; RocketIO; GTP 在数字系统互连设计中,高速串行I/O技术取代传统的并行I/O技术成为当前发展的趋势。与传统并行I/O技术相比,串行方案提供了更大的带宽、更远的距离、更低的成本和更高的扩展能力,克服了并行I/O设计存在的缺陷。在实际设计应用中,采用现场可编程门阵列( FPGA)实现高速串行接口是一种性价比较高的技术途径。

    标签: FPGA 高速串行 传输接口

    上传时间: 2013-11-22

    上传用户:lingzhichao